Anyone a Master of Physics?

Anyone a Master of Physics?

Posers and Puzzles

Cookies help us deliver our Services. By using our Services or clicking I agree, you agree to our use of cookies. Learn More.

R
The Rams

Joined
04 Sep 06
Moves
13491
19 Sep 07

Originally posted by PBE6
(A) The tension on the suspending cord does no work on the weight, because the force it exerts is always tangential to the movement of the weight.

(B) The air resistance always does negative work on the weight, because air resistance opposes the motion of the pendulum and therefore always acts opposite to the direction of movement of the pendulum.

(C) The ...[text shortened]... ding on whether the pendulum is on an upswing (negative work) or on a downswing (positive work).
Perfect and well said, 100% correct.
Next question to follow.

R
The Rams

Joined
04 Sep 06
Moves
13491
19 Sep 07

Momentum

6. An open box slides across a frictionless, icy surface of a frozen lake. What happens to the speed of the box as water from a rain shower collect in it, assuming that the rain falls vertically into the box? Explain.

Insanity at Masada

tinyurl.com/mw7txe34

Joined
23 Aug 04
Moves
26660
19 Sep 07
1 edit

Originally posted by Ramned
Momentum

[b]6. An open box slides across a frictionless, icy surface of a frozen lake. What happens to the speed of the box as water from a rain shower collect in it, assuming that the rain falls vertically into the box? Explain.
[/b]
The rain will add mass to the box without adding horizontal momentum, so the box will slow down.

One might think of the slowing as being caused by the moving rear wall of the box impacting with the horizontally stationary raindrops. Kinetic energy is transferred from the box to the raindrops to get them to move with the box, slowing it down.

R
The Rams

Joined
04 Sep 06
Moves
13491
19 Sep 07

Originally posted by AThousandYoung
The rain will add mass to the box without adding horizontal momentum, so the box will slow down.

One might think of the slowing as being caused by the moving rear wall of the box impacting with the horizontally stationary raindrops. Kinetic energy is transferred from the box to the raindrops to get them to move with the box, slowing it down.
Good - next question (7) to follow.

R
The Rams

Joined
04 Sep 06
Moves
13491
19 Sep 07

Law of Gravity

7. If the mass of the earth were doubled at the same time as its radius were doubled, the free fall acceleration would....
A. Stay the Same. B. Decrease. C. Increase.
Explain.

P
Bananarama

False berry

Joined
14 Feb 04
Moves
28719
19 Sep 07

Originally posted by Ramned
Law of Gravity

[b]7. If the mass of the earth were doubled at the same time as its radius were doubled, the free fall acceleration would....
A. Stay the Same. B. Decrease. C. Increase.
Explain.
[/b]
The force of gravitational attraction F acting between two objects m1 and m2 is given by:

F = G*m1*m2/(r^2)

The free-fall acceleration A acting on m1 is given by:

A = F/m1 = G*m2/(r^2)

If we double m2 and r, we have:

A* = G*(2*m2)/((2r)^2) = 2*G*m2/(4*r^2) = 0.5*G*m2/(r^2) = 0.5*A

Therefore, the free-fall acceleration would decrease.

s
Astrophysicist

Outer Space

Joined
05 Apr 06
Moves
46548
19 Sep 07

Originally posted by PBE6
The force of gravitational attraction F acting between two objects m1 and m2 is given by:

F = G*m1*m2/(r^2)

The free-fall acceleration A acting on m1 is given by:

A = F/m1 = G*m2/(r^2)

If we double m2 and r, we have:

A* = G*(2*m2)/((2r)^2) = 2*G*m2/(4*r^2) = 0.5*G*m2/(r^2) = 0.5*A

Therefore, the free-fall acceleration would decrease.
Ditto.

R
The Rams

Joined
04 Sep 06
Moves
13491
20 Sep 07

Originally posted by PBE6
The force of gravitational attraction F acting between two objects m1 and m2 is given by:

F = G*m1*m2/(r^2)

The free-fall acceleration A acting on m1 is given by:

A = F/m1 = G*m2/(r^2)

If we double m2 and r, we have:

A* = G*(2*m2)/((2r)^2) = 2*G*m2/(4*r^2) = 0.5*G*m2/(r^2) = 0.5*A

Therefore, the free-fall acceleration would decrease.
Good...next one to follow...

R
The Rams

Joined
04 Sep 06
Moves
13491
20 Sep 07

Rotational Dynamics

8. In some motorcycle races, the riders drive over small hills so the motorcycle is airborne for some time. If the motorcycle racer keeps the throttle open while leaving the hill & going into the air, the mororcycle's nose tends to rise upwards. Why does this happen?

Insanity at Masada

tinyurl.com/mw7txe34

Joined
23 Aug 04
Moves
26660
20 Sep 07

Originally posted by Ramned
Rotational Dynamics

[b]8. In some motorcycle races, the riders drive over small hills so the motorcycle is airborne for some time. If the motorcycle racer keeps the throttle open while leaving the hill & going into the air, the mororcycle's nose tends to rise upwards. Why does this happen?
[/b]
Conservation of angular momentum. The wheel is spinning one way but is not in contact with the Earth which would "spin" the other way (very, very slowly due to the difference in mass). Thus the motorcycle itself must spin about the axis of the rear wheel.

H

San Diego

Joined
23 May 07
Moves
2124
20 Sep 07

Originally posted by AThousandYoung
Conservation of angular momentum. The wheel is spinning one way but is not in contact with the Earth which would "spin" the other way (very, very slowly due to the difference in mass). Thus the motorcycle itself must spin about the axis of the rear wheel.
It is a conservation of angular momentum issue. Restated: Since the rear wheel is no longer in contact with the ground, it will accelerate if the throttle remains at the same position, as it has much less force countering it tangential to its surface. Viewed from the rider's left side, the force to the left that the earth exerts on the wheel is removed. This force was creating a clockwise moment on the wheel. The wheel thus gains counterclockwise momentum (wheel spins forward faster) when the bike is in the air. The total moment of the system (the bike and rider) is conserved when the nose rotates upward (clockwise moment when viewed from the left).

R
The Rams

Joined
04 Sep 06
Moves
13491
20 Sep 07

Originally posted by HolyT
It is a conservation of angular momentum issue. Restated: Since the rear wheel is no longer in contact with the ground, it will accelerate if the throttle remains at the same position, as it has much less force countering it tangential to its surface. Viewed from the rider's left side, the force to the left that the earth exerts on the wheel is removed. Thi ...[text shortened]... rider) is conserved when the nose rotates upward (clockwise moment when viewed from the left).
Good, well described at that. Next one to follow - may take a bit to come up with.

BTW after each set of 10, I will produce a very challenging problem based on the conceptuals for each 10.

R
The Rams

Joined
04 Sep 06
Moves
13491
20 Sep 07

Solids / Fluids

9.Tornadoes and Hurricanes often lift the roofs of houses. (A) Why does this happen? Explain; use the Bernoulli Effect to explain why. (B) Why should you keep your windows open under these conditions?

H

San Diego

Joined
23 May 07
Moves
2124
20 Sep 07

Originally posted by Ramned
Solids / Fluids

[b]9.Tornadoes and Hurricanes often lift the roofs of houses. (A) Why does this happen? Explain; use the Bernoulli Effect to explain why. (B) Why should you keep your windows open under these conditions?
[/b]
Thanks!

The immediate physical effects of hurricanes (high straight-line winds) are far different from those of tornados (high-speed rotating winds). Forgetting the effects that I'm sure you weren't referring to, such as storm surge, hail, lightning, and rain, the common ingredient is the wind, and its effects are different for both. Can you narrow the problem down to either hurricanes or tornadoes? Or are you talking about high straight-line winds regardless of the source? I don't think you're talking about low pressure, since the pressure differences by themselves don't lift roofs.

Quiz Master

RHP Arms

Joined
09 Jun 07
Moves
48793
20 Sep 07

Originally posted by Ramned
Solids / Fluids

[b]9.Tornadoes and Hurricanes often lift the roofs of houses. (A) Why does this happen? Explain; use the Bernoulli Effect to explain why. (B) Why should you keep your windows open under these conditions?
[/b]
In a simplistic model the outside moving air causes a lower pressure (Bernoulli) than the inside motionless air. The pressure difference causes the building to 'explode'.

Keeping the windows open will obviously dramatically reduce the effect.