1. Joined
    30 Oct '04
    Moves
    7813
    21 Jun '05 11:22
    Originally posted by doublez
    from the quote you gave (from my source) it implies that when one infinity is a subset of another it is smaller.
    Smaller than what?
    When you deal with finite sets it is clear that a proper subset is smaller because it has less elements than the set itself.
    With infinite sets that is not so. All infinite countable sets are equivalent e.g. even numbers are as many as all natural numbers, all rational numbers are as many as all natural, etc.
    I recommend you read some of Cantor's Theories on the subject just in case you realy want to understand why operating with infinite sest is so counter-intuitive.
  2. Joined
    21 May '05
    Moves
    480
    22 Jun '05 06:44
    Originally posted by THUDandBLUNDER
    You haven't a clue what you are talking about.
    In future you should stick to finite sets, sonny.

    Originally posted by doublez
    [b]from the quote you gave (from my source) it implies that when one infinity is a subset of another it is smaller.

    It said 'smaller', not smaller. Notice the difference? Duh.

    [i]Originally posted by doub ...[text shortened]... nfinity + Infinity = Infinity
    or, more precisely,
    Aleph(zero) + Aleph(zero) = Aleph(zero)

    [/b]
    UM... "there are even more individual numbers than there are squares".
  3. Standard memberPBE6
    Bananarama
    False berry
    Joined
    14 Feb '04
    Moves
    28719
    22 Jun '05 14:33
    Originally posted by doublez
    UM... "there are even more individual numbers than there are squares".
    Sorry doublez, that isn't the way it works. A common error people make when people compare these kinds of sets goes something like this:

    "There are more individual numbers than there are squares. If we count from 1 to 100, we've got 100 numbers and only 10 squares. And if we count up to 1,000,000 we've got 1,000,000 numbers and only 1000 squares. Clearly, there are more individual numbers than squares."

    For any finite set, that is true. But in an infinite set, we're not bounded by some upper counting value. All we have to count out more squares. So the counting would go something like this:

    "If we count from 1 to 100, we have 100 numbers. To find an equal that number of squares, we look just look at the first 100 squares (up to the number 10,000)."

    "But wait a minute!" you might say. "If we count up to 10,000 then we would have 10,000 numbers, and that's clearly more than the number of squares!" But all we'd have to do there is count the first 10,000 squares (up to the number 100,000,000).

    "But wait a minute!" you might say again. "That's not fair! You're counting much higher to get the same number of squares!" which is true. However, you must remember that these are all finite slices of two infinite sets. When you're dealing with infinity, there is no ceiling to hit, no finish line to cross. This is a progressive embodiment of what Galileo called the "potential" of infinity in the link you provided. So it's not cheating to count ahead with one set (squares), because the other set (numbers) will catch up. There is no "head start" we can give to either set that the other set can't surmount.

    That's why there are the "same" number of squares and individual numbers (meaning the sets have the same degree of infinity). Of course, real numbers (1, -2, 1/3, 0.5832298...) are a different kettle of fish... =)

    I hope that helps.
  4. Standard memberPBE6
    Bananarama
    False berry
    Joined
    14 Feb '04
    Moves
    28719
    23 Jun '05 00:42
    Ha ha! I guess I win.
  5. Joined
    21 May '05
    Moves
    480
    23 Jun '05 05:29
    so... the source is wrong?
  6. Joined
    29 Feb '04
    Moves
    22
    23 Jun '05 05:41
    Originally posted by doublez
    so... the source is wrong?
    No, your interpretation of it is wrong.
  7. Standard memberPBE6
    Bananarama
    False berry
    Joined
    14 Feb '04
    Moves
    28719
    23 Jun '05 05:463 edits
    Originally posted by doublez
    so... the source is wrong?
    I tought you wouldn't reply until a taunt came out, and I guess that was the case. Honestly, I don't care who's right as long as the truth gets spelled out for all to hear. I've been wrong many times, and although it's hard to swallow sometimes, it makes me feel better to learn a new truth. Does what I say make sense?

    EDIT: I'm drunk right now...
  8. Joined
    21 May '05
    Moves
    480
    24 Jun '05 05:37
    yes but the the source clearly states that "there are more individual numbers than there are squares. " without any brackets etc in the text.
  9. Joined
    29 Feb '04
    Moves
    22
    24 Jun '05 11:13
    Originally posted by doublez
    yes but the the source clearly states that "there are more individual numbers than there are squares. " without any brackets etc in the text.
    Yawn. 😴
  10. Joined
    30 Oct '04
    Moves
    7813
    24 Jun '05 11:15
    Originally posted by doublez
    yes but the the source clearly states that "there are more individual numbers than there are squares. " without any brackets etc in the text.
    From "your" source:
    Galileo has spotted something very special about infinity. The normal rules of arithmetic don't really apply to it. You can effectively have 'smaller' and 'bigger' infinities, one a subset of the other, that are nonetheless the same size.
    Now can we drop that issue already?
    And just so yo get your definitions straight read this:
    http://mathworld.wolfram.com/InfiniteSet.html
Back to Top

Cookies help us deliver our Services. By using our Services or clicking I agree, you agree to our use of cookies. Learn More.I Agree