Go back
Q and B Mate?

Q and B Mate?

Only Chess

AThousandYoung
1st Dan TKD Kukkiwon

tinyurl.com/2te6yzdu

Joined
23 Aug 04
Moves
26758
Clock
04 Apr 09
Vote Up
Vote Down

Can a Queen and a Bishop force mate without the help of the King?

cg

Seattle

Joined
30 Jan 06
Moves
26370
Clock
04 Apr 09
Vote Up
Vote Down

I think so...I mean logically I can see the checkmate but it might take awhile to force it

S
Caninus Interruptus

2014.05.01

Joined
11 Apr 07
Moves
92274
Clock
04 Apr 09
Vote Up
Vote Down

Originally posted by AThousandYoung
Can a Queen and a Bishop force mate without the help of the King?
Trick question!

It cannot be mate without 2 Kings on the board. Without 2 Kings on the board, it is no longer Chess, but some bizarre variant game masquerading as chess.

Y
Renaissance

OnceInALifetime

Joined
24 Sep 05
Moves
30579
Clock
04 Apr 09
1 edit
Vote Up
Vote Down

Originally posted by AThousandYoung
Can a Queen and a Bishop force mate without the help of the King?
Yes, although even Kasparov can mess it up...

The game is Kasparov-Georgiev, 1988 blitz

AThousandYoung
1st Dan TKD Kukkiwon

tinyurl.com/2te6yzdu

Joined
23 Aug 04
Moves
26758
Clock
04 Apr 09
Vote Up
Vote Down

Originally posted by SwissGambit
Trick question!

It cannot be mate without 2 Kings on the board. Without 2 Kings on the board, it is no longer Chess, but some bizarre variant game masquerading as chess.
I didn't say the Kings weren't on the board. I just said the winner's King doesn't help force the mate.

MR

Joined
19 Jun 06
Moves
847
Clock
04 Apr 09
1 edit
Vote Up
Vote Down

Agree with Yuga. Against a bare king, sure it can. I'm not sure what the most efficient method is, although I see engines do it all the time, and it never seems to take more than a handful of moves.

But if you're not worried about efficiency, it's a trivial problem. Just the queen alone can force the king to the last two squares in one of the corners. Then, once the king goes to the corner square, you check it with the bishop and finally deliver mate with the queen on the next move.

Edit - I forgot to say that this works if the bare king goes to a corner of the same color of the bishop. If he goes to the other corner, then the last bishop move isn't a check, but you get the idea.

greenpawn34

e4

Joined
06 May 08
Moves
43363
Clock
04 Apr 09
Vote Up
Vote Down

Mad Rook is right.

One method is to use the Queen giving the opposing King 'knight checks'
ie. pretend the Queen is a Knight and check the King.

You can then force the King onto the back rank.

**************BEWARE****************

Although the Queen cannot deliver mate by herself
she is very capable of giving stalemate.

Avoid this positon with Black to play. It's Stalemate.

g

Joined
29 Jul 01
Moves
8818
Clock
04 Apr 09
Vote Up
Vote Down

Originally posted by AThousandYoung
Can a Queen and a Bishop force mate without the help of the King?
Yes. It is so easy I wonder why you are asking such a question.

S
Caninus Interruptus

2014.05.01

Joined
11 Apr 07
Moves
92274
Clock
04 Apr 09
Vote Up
Vote Down

Originally posted by AThousandYoung
I didn't say the Kings weren't on the board. I just said the winner's King doesn't help force the mate.
Ahh, very good. You got me.



Just for kicks, I tried it against Fritz 9 from this position. Play went
1. Qc1 Ke5 2. Qc4 Kf5 3. Qe6+ Kf4 4. Bd5 Kg5 5. Qf7 Kg4 6. Qf6 Kg3 7. Qf5 Kh4 8. Qg6 Kh3 9. Bf3 Kh2 10. Qg2#

Pretty trivial to win this; the only real danger is stalemate.

MR

Joined
19 Jun 06
Moves
847
Clock
04 Apr 09
Vote Up
Vote Down

Originally posted by SwissGambit
Ahh, very good. You got me.

[fen]8/8/8/8/3k4/8/B7/KQ6 w - - 0 1[/fen]

Just for kicks, I tried it against Fritz 9 from this position. Play went
1. Qc1 Ke5 2. Qc4 Kf5 3. Qe6+ Kf4 4. Bd5 Kg5 5. Qf7 Kg4 6. Qf6 Kg3 7. Qf5 Kh4 8. Qg6 Kh3 9. Bf3 Kh2 10. Qg2#

Pretty trivial to win this; the only real danger is stalemate.
And the shortest tablebase win is mate in 7 (five different lines). 🙂

Cookies help us deliver our Services. By using our Services or clicking I agree, you agree to our use of cookies. Learn More.