Go back
consecutive integer powers

consecutive integer powers

Posers and Puzzles

PDI

Joined
30 Sep 12
Moves
731
Clock
14 Feb 15
Vote Up
Vote Down

How many solutions in natural numbers does x^a − y^b = 1 have, for x, a, y, b > 1? [I use ^ to indicate taking a power.]

I have seen the answer to this, but not the proof. I am guessing the proof is quite difficult.

So realistically, I am asking for you to be brave enough to estimate how many solutions there are. Infinitely many? If in fact a finite number, take a guess at how many. My motivation for posing this problem is I am just curious about your number theory intuition.

Shallow Blue

Joined
18 Jan 07
Moves
12477
Clock
14 Feb 15
Vote Up
Vote Down

Originally posted by Paul Dirac II
How many solutions in natural numbers does x^a − y^b = 1 have, for x, a, y, b > 1? [I use ^ to indicate taking a power.
Have you been browsing the same web pages I have? (I've been pottering about the edges of Fermat recently, for irrelevant reasons.)

I know the answer, so I won't spoil it; but the coincidence of you asking this question just after I'd come across the answer is amusing.

PDI

Joined
30 Sep 12
Moves
731
Clock
14 Feb 15
Vote Up
Vote Down

I did get this particular one from a web page, as it happens. 😉

I'll hold off longer on the answer in case anyone else wants to hazard a guess.

f
Defend the Universe

127.0.0.1

Joined
18 Dec 03
Moves
16687
Clock
15 Feb 15
2 edits
Vote Up
Vote Down

does this assume a != b != x != y?

PDI

Joined
30 Sep 12
Moves
731
Clock
15 Feb 15
Vote Up
Vote Down

Originally posted by forkedknight
does this assume a != b != x != y?
You do not have to assume those inequalities in this problem.

I think we can see though that a=b is not actually going to get you anywhere, and likewise x=y is not going to get you anywhere.

(But remember that all four of those things do need to be integers greater than 1.)

BK

Joined
07 Mar 14
Moves
64212
Clock
15 Feb 15
Vote Up
Vote Down

3^2 - 2^3 = 1

from this I conclude: at least one solution.

PDI

Joined
30 Sep 12
Moves
731
Clock
15 Feb 15
1 edit
Vote Up
Vote Down

Originally posted by Bob Kramer
3^2 - 2^3 = 1

from this I conclude: at least one solution.
Yep. Single-digit numbers give one "hit."

Does anybody sense others are lurking at higher values of x, y, a or b?

f
Defend the Universe

127.0.0.1

Joined
18 Dec 03
Moves
16687
Clock
17 Feb 15
Vote Up
Vote Down

there's nothing in the 2 <= a,b <= 10 and 2 <= x,y <= 1000 range

I don't know how to go about a proof, though.

PDI

Joined
30 Sep 12
Moves
731
Clock
17 Feb 15
Vote Up
Vote Down

I see forkedknight did some computer work. And it is true that there are no additional hits besides 9 - 8 = 1 in the range forkedknight checked.

My intuition is such that I would find it very plausible that there are an infinite number of solutions. But my source says it was conjectured in 1844 that 9 - 8 = 1 is the only solution, and was proved in 2002. That it took more than a century means the proof (which I have not seen) is probably very advanced.

W

Joined
29 Oct 09
Moves
1421
Clock
20 Feb 15

Originally posted by Paul Dirac II
But my source says it was conjectured in 1844 that 9 - 8 = 1 is the [b]only solution, and was proved in 2002. That it took more than a century means the proof (which I have not seen) is probably very advanced.[/b]
It used to be Catalan's conjecture and now is Mihailescu's theorem. The 21st century has seen quite a bit of progress in number theory. The Green-Tao theorem was a 2004 achievement. In 2013, as far as I remember within a few days, preprints of two papers were published: one by Zhang, showing that there are infinitely many pairs of primes differing by 70,000,000 or less, and another one by Helfgott, proving the weak Goldbach conjecture.

While it might sound as if the second one is more important, it is very much the opposite. The weak Goldbach conjecture is much less difficult than the Goldbach conjecture, and it had actually been "almost" proved in the 1930s: Vinogradov had shown that it is true for sufficiently large numbers.

Zhang's theorem on the other hand was a shock to many who considered such a result out of reach. The number 70,000,000 is irrelevant and was very quickly improved upon. The important thing is that there actually is a number such that you can find infinitely many gaps between primes not exceeding it. That is, Zhang showed that, while prime gaps tend to get larger and larger on average, you can always find two primes "close" to one another, where, for Zhang, "close" means "70,000,000 or less apart". This is quite huge and gives some hope that humans might one day prove the twin prime conjecture, which says the same thing save for the definition of closeness. The twin prime conjecture considers primes to be close when they are 2 apart.

Another thing that happened is that before Zhang's result a number of leading mathematicians had teamed up in 2009 to create the Polymath Project, an experiment in collaborative proof-making on the internet. It is an open project -- anyone can join in and try to do their part in solving a problem at hand. After Zhang issued his proof, it was proposed that they should try to lower Zhang's bound of 70,000,000. It turned out to be a success: the bound was lowered to 246 (!) and to 6 (!!) assuming a strong but widely believed conjecture.

Another 21st century's remarkable achievement was the AKS algorithm, which establishes whether a given number n is prime in polynomial time (in the number of bits in the binary representation of n). Algorithms that achieved that were known before -- sort of. Some did it for only some numbers n, some did it non-deterministically (they ascertained that a number is prime with a very high probability) and the polynomial running time of some depended on the Riemann hypothesis. The AKS algorithm deals with all of these problems.

Cookies help us deliver our Services. By using our Services or clicking I agree, you agree to our use of cookies. Learn More.