Posers and Puzzles
16 Nov 06
a and b are rational. Therefore a can be written a1/a2, b as b1/b2 (a1,a2,b1,b2 all integers).
Assume that c is rational too. So c can be written as c1/c2 (c1 and c2 integers).
(a1/a2)^n + (b1/b2)^n = (c1/c2)^n
Multiply both sides by (a2*b2*c2)^n
This gives (a1*b2*c2)^n + (b1*a2*c2)^n = (c1*a2*b2)^n
Clearly a1*b2*c2, b1*a2*c2 and c1*a2*b2 are all integers and satisfy A^n + B^n = C^n, which we know has no integer solutions.
Therefore our assumption that c is rational must be false.
Originally posted by Fat Ladysee-simple 🙂
a and b are rational. Therefore a can be written a1/a2, b as b1/b2 (a1,a2,b1,b2 all integers).
Assume that c is rational too. So c can be written as c1/c2 (c1 and c2 integers).
(a1/a2)^n + (b1/b2)^n = (c1/c2)^n
Multiply both sides by (a2*b2*c2)^n
This gives (a1*b2*c2)^n + (b1*a2*c2)^n = (c1*a2*b2)^n
Clearly a1*b2*c2, b1*a2*c2 and c1*a2*b2 are ...[text shortened]... we know has no integer solutions.
Therefore our assumption that c is rational must be false.
EDIT: i'm bored now. therefore, next question,
can 1/2+1/3+...+1/n=A where A is an integer?
this one is -erm- slightly tougher...