1. Joined
    23 Jan '07
    Moves
    2547
    23 Jan '07 22:30
    i did a competition today and only one problem i couldn't figure out, it is hard hard hard hard hard, if you can help please do and give your answer and how you did it.

    a triangle with lenths 8,10,12 has an angle bisecter that bisecs the angle formed by the 8 and 10 lines, 2 segments are formed on the lenth 12 line, find the lenth of the 2 segments.
  2. SubscriberAThousandYoung
    All My Soldiers...
    tinyurl.com/y9ls7wbl
    Joined
    23 Aug '04
    Moves
    24791
    23 Jan '07 22:341 edit
    Originally posted by Ason Pigg2
    i did a competition today and only one problem i couldn't figure out, it is hard hard hard hard hard, if you can help please do and give your answer and how you did it.

    a triangle with lenths 8,10,12 has an angle bisecter that bisecs the angle formed by the 8 and 10 lines, 2 segments are formed on the lenth 12 line, find the lenth of the 2 segments.
    Solve the angles of the triangle (it's case 2)

    http://planetmath.org/encyclopedia/TriangleSolving.html

    Then, as the one angle is bisected, you know the values of the two new angles will be half.

    Now you have an ASA triangle, which is made up of the 8 (or 10, depending which you pick) and the two known angles. Solve this triangle. It's case 1 in the link above.

    This should be in Pozers and Puzzles. I've alerted it, so it might get moved there.
  3. Joined
    23 Jan '07
    Moves
    2547
    24 Jan '07 03:271 edit
    ok, so what if i know the angle degree?it helps me nothing. sin and cos works on right triangles, not this kind.
  4. Joined
    23 Jan '07
    Moves
    2547
    24 Jan '07 03:33
    thanks for the web though
  5. SubscriberAThousandYoung
    All My Soldiers...
    tinyurl.com/y9ls7wbl
    Joined
    23 Aug '04
    Moves
    24791
    24 Jan '07 04:27
    Originally posted by Ason Pigg2
    thanks for the web though
    Well, I'm not going to spend my time trying to convince you I'm right. I handed you the method you need to solve this, but if you don't believe me, feel free to look elsewhere. You won't have any luck though.
  6. Sydney
    Joined
    30 May '05
    Moves
    16100
    24 Jan '07 23:38
    Originally posted by AThousandYoung
    Well, I'm not going to spend my time trying to convince you I'm right. I handed you the method you need to solve this, but if you don't believe me, feel free to look elsewhere. You won't have any luck though.
    That's a great site thanks AThousandYoung
  7. Subscribersonhouse
    Fast and Curious
    slatington, pa, usa
    Joined
    28 Dec '04
    Moves
    52724
    25 Jan '07 00:01
    Originally posted by idioms
    That's a great site thanks AThousandYoung
    You come up with 55.7, 41.4 and 82.8 degrees for the angles?
  8. Joined
    23 Mar '06
    Moves
    20827
    25 Jan '07 05:03
    Originally posted by sonhouse
    You come up with 55.7, 41.4 and 82.8 degrees for the angles?
    The question is what are the lengths of the two new lines.

    5 and 7
  9. Sydney
    Joined
    30 May '05
    Moves
    16100
    25 Jan '07 05:32
    It's actually a "special" triangle with sides in 4:5:6 ratio .. the following page

    http://www.mathpuzzle.com/Chebychev.html

    Describes the process but essentially this is the bit they want you to show

    "If the sides of the triangle (a,b,c) = (1,U[k-1],U[k]), then the angle opposite b will be k times the angle opposite a, a fact easily derived from the Law of Sines."

    http://en.wikipedia.org/wiki/Law_of_sines

    which will give you the length of the intervals without having to calculate the angles
  10. Joined
    11 Nov '05
    Moves
    43938
    25 Jan '07 08:38
    Here is some information about a Pythagorean triangle.
    http://www.mcs.surrey.ac.uk/Personal/R.Knott/Pythag/pythag.html#345

    A famous P triangle has it sides: 3,4,5.
    The triangle in this thread is 8,10,12 and is not pythagorean.
    Neither is the 4,5,6 triangle.
  11. Sigulda, Latvia
    Joined
    30 Aug '06
    Moves
    4048
    25 Jan '07 18:411 edit
    There is no need to know the angles. This is actually pretty simple. (Few days ago I had a test in geometry in a similar theme). If there is a triangle ABC and a bisector AD is drawn from angle A than the bisector rule (I think that's the way it is called in English though I'm not sure) works here => AB/AC = BD/BC. From this you can get an equation system that BD/BC = 8/10 (or 10/8) and BD + BC = 12. By solving this you'll get the result that those two lines are 5 1/3 and 6 2/3. (5.(3) and 6.(6))
  12. Joined
    23 Mar '06
    Moves
    20827
    25 Jan '07 19:49
    Originally posted by kbaumen
    There is no need to know the angles. This is actually pretty simple. (Few days ago I had a test in geometry in a similar theme). If there is a triangle ABC and a bisector AD is drawn from angle A than the bisector rule (I think that's the way it is called in English though I'm not sure) works here => AB/AC = BD/BC. From this you can get an equation system th ...[text shortened]... olving this you'll get the result that those two lines are 5 1/3 and 6 2/3. (5.(3) and 6.(6))
    I already posted the answer.

    🙄
  13. The first person
    Joined
    21 May '06
    Moves
    12500
    27 Jan '07 10:11
    The answer: (16/3) and (20/3), as was quite rightly said earlier.
    The method:
    - the bisector is perpendicular to the side of 12
    - hence there are two right triangles, one with hypotenuse 8, one with hypotenuse 10
    - Let the lengths of the division of side 12 be "a" (the larger) and "b"; the angle opposite these sides "x"
    - form simultaneous equations:

    1) a + b = 12 - i

    2) (using sin x = opp/hyp)

    sin x = b/8 = a/10, so 4a = 5b - ii

    Solving simultaneously gives a = (20/3) and b = (16/3)

    I hope this helps and I apologise if I have repeated anything already said.
  14. Sigulda, Latvia
    Joined
    30 Aug '06
    Moves
    4048
    28 Jan '07 09:17
    - the bisector is perpendicular to the side of 12
    It's not perpendicular. It would be only if the sidelines of it would be equal. (Triangle ABC, bisector AD, AB=AC)
  15. The first person
    Joined
    21 May '06
    Moves
    12500
    28 Jan '07 15:04
    You're right. How come my method worked then? Luck?
Back to Top