A thousand years from now, we have interstellar spacecraft, a team finds an artifact the size of a planet but cube-shaped, 15,000 Km across one face and it masses the same as the earth, 6 E24 Kg.
There is no atmosphere. What is the lowest orbit you can safely acheive around such an object? It is homogenous density wise. What is the shape of the orbit?
Originally posted by sonhouseThis is unsolvable analytically. It can only be solved numerically by using a computer program using some numerical methods. Hence it is a boring puzzle. Not worth even attempting..
A thousand years from now, we have interstellar spacecraft, a team finds an artifact the size of a planet but cube-shaped, 15,000 Km across one face and it masses the same as the earth, 6 E24 Kg.
There is no atmosphere. What is the lowest orbit you can safely acheive around such an object? It is homogenous density wise. What is the shape of the orbit?
Originally posted by sonhousethe lowest orbit is just above zero 🙂 , or h_lowest = sqrt( 7500^2 + 7500^2 ) = 10 607km from the center of the cube, and the shape of the orbit is a superellipse I believe.
A thousand years from now, we have interstellar spacecraft, a team finds an artifact the size of a planet but cube-shaped, 15,000 Km across one face and it masses the same as the earth, 6 E24 Kg.
There is no atmosphere. What is the lowest orbit you can safely acheive around such an object? It is homogenous density wise. What is the shape of the orbit?