Go back
Geometry problem

Geometry problem

Posers and Puzzles

Acolyte
Now With Added BA

Loughborough

Joined
04 Jul 02
Moves
3790
Clock
25 Oct 04
Vote Up
Vote Down

Suppose you try to cover the real plane with non-overlapping disks as follows: first you pack unit disks in as closely as you can (ie hexagonal packing), and then in each subsequent iteration you put in each the largest disk that will fit into each gap left by the previous iteration (ie you put one disk into each gap).

Give a formula (possibly recursive) for the 'proportion' of the plane that is left uncovered after the nth iteration.

r
CHAOS GHOST!!!

Elsewhere

Joined
29 Nov 02
Moves
17317
Clock
26 Oct 04
Vote Up
Vote Down

Originally posted by Acolyte
Suppose you try to cover the real plane with non-overlapping disks as follows: first you pack unit disks in as closely as you can (ie hexagonal packing), and then in each subsequent iteration you put in each the largest disk that will fit into each gap left by the previous iteration (ie you put one disk into each gap).

Give a formula (possibly recursive) for the 'proportion' of the plane that is left uncovered after the nth iteration.
Hmmm. I've worked out that the proportion after the first iteration (ie when all the disks are the same size) is pi*3^(1/2)/6, but I haven't done any more than that, although I'll see what I can do later.

What motivated this one, by the way?

f

my head

Joined
03 Oct 03
Moves
671
Clock
26 Oct 04
Vote Up
Vote Down

after the first iteration, an equal precentage of the remaining space will be filled with each itteration, if that's any help (and not blatanly obvious)

Cookies help us deliver our Services. By using our Services or clicking I agree, you agree to our use of cookies. Learn More.