Go back
The Circular Field

The Circular Field

Posers and Puzzles

Blood On The Tracks

Joined
11 Nov 14
Moves
34223
Clock
27 Oct 16
Vote Up
Vote Down

A farmer owns a circular field which has a radius of 20m.

He wishes to tether a goat to a post on the edge of the field (ie, the circumference of the circle) with a rope so that the goat will have access to exactly half of the field.

How long should he make the rope?

apathist
looking for loot

western colorado

Joined
05 Feb 11
Moves
9664
Clock
28 Oct 16
Vote Up
Vote Down

I smell calculus.

venda
Dave

S.Yorks.England

Joined
18 Apr 10
Moves
86176
Clock
28 Oct 16
Vote Up
Vote Down

Originally posted by Blood On The Tracks
A farmer owns a circular field which has a radius of 20m.

He wishes to tether a goat to a post on the edge of the field (ie, the circumference of the circle) with a rope so that the goat will have access to exactly half of the field.

How long should he make the rope?
I've seen this before I think.
The divisions are going to be "half moon" shaped but my geometry knowledge is not good enough to apply to the problem

B
Not Gone Yet

STALKER ALERT!!

Joined
15 Feb 16
Moves
1685
Clock
28 Oct 16
Vote Up
Vote Down

Im probably not right, bu in my minds eye it looks correct.

If the radius is A and the circumference is B, then wouldnt you need to do A+.5A=Half the circle?

Blood On The Tracks

Joined
11 Nov 14
Moves
34223
Clock
28 Oct 16
Vote Up
Vote Down

Originally posted by Andrew Kern
Im probably not right, bu in my minds eye it looks correct.

If the radius is A and the circumference is B, then wouldnt you need to do A+.5A=Half the circle?
Hi

I think you are saying, for my 20m radius field, that it should be 30m rope?

Afraid that isnt correct ~ would be too long, letting goat eat much more than half

yelrambob

Brooklyn

Joined
27 Dec 07
Moves
5114
Clock
28 Oct 16
Vote Up
Vote Down

14.14m

Ponderable
chemist

Linkenheim

Joined
22 Apr 05
Moves
669930
Clock
28 Oct 16
Vote Up
Vote Down

Originally posted by yelrambob
14.14m
14.14m would be the answer for a full circle inside the circle. (So put the post 14.14 m from the border to get the goat to eat up to the border.

Blood On The Tracks

Joined
11 Nov 14
Moves
34223
Clock
28 Oct 16
Vote Up
Vote Down

14.14 isn't correct, as ponderable says, that is the radius of a circle with half the area of the field

But because the goat is tethered on the circumference, it doesn't eat in a full circle, it is basically 2 segments stuck together back to back.

B
Not Gone Yet

STALKER ALERT!!

Joined
15 Feb 16
Moves
1685
Clock
29 Oct 16
Vote Up
Vote Down

I know! Building a fence.

😉 😉 😉

venda
Dave

S.Yorks.England

Joined
18 Apr 10
Moves
86176
Clock
29 Oct 16
Vote Up
Vote Down

Goats will eat anything,so in the real world it'd probably chew thro' the rope!!

R
Standard memberRemoved

Joined
10 Dec 06
Moves
8528
Clock
31 Oct 16
4 edits
Vote Up
Vote Down

Originally posted by Blood On The Tracks
A farmer owns a circular field which has a radius of 20m.

He wishes to tether a goat to a post on the edge of the field (ie, the circumference of the circle) with a rope so that the goat will have access to exactly half of the field.

How long should he make the rope?
There probably is a cleaner way. ( to be honest I'm not going to find a numerical solution...because I'm lazy and I don't suppose you are after a numerical approximation, However, this should yield the answer if I followed through)

Let the radius of the field = R
Length of rope = L

The equation that needs to be solved:

1/2* Field Area = Area of Circular sector of radius "L" subtended by angle φ(L,R) + 2* Area Circular segment of Chord Length "L" subtended by angle ß(L,R)

1/2*π*R² = 1/2*arccos [L/( 2*R )]*L² + R²*( arcsin[ L/R*√(1 - ( L/( 2*R))² ) ] - L/R*√( 1 - ( L/( 2*R))² ))

Solve for L numerically ( maybe there is a compact analytic solution I'm missing?)

R
Standard memberRemoved

Joined
10 Dec 06
Moves
8528
Clock
01 Nov 16
1 edit
Vote Up
Vote Down

Originally posted by joe shmo
There probably is a cleaner way. ( to be honest I'm not going to find a numerical solution...because I'm lazy and I don't suppose you are after a numerical approximation, However, this should yield the answer if I followed through)

Let the radius of the field = R
Length of rope = L

The equation that needs to be solved:

1/2* Field Area = Area of Ci ...[text shortened]... 2*R))² ))

Solve for L numerically ( maybe there is a compact analytic solution I'm missing?)
Well, I went through with it. I found a small error in my equation when I tried to solve it.

Corrected version:

1/2*π*R² = arccos [L/( 2*R )]*L² + R²*( arcsin[ L/R*√(1 - ( L/( 2*R))² ) ] - L/R*√( 1 - ( L/( 2*R))² ))

The answer is about 23.175 m.

Blood On The Tracks

Joined
11 Nov 14
Moves
34223
Clock
01 Nov 16
Vote Up
Vote Down

Nice work, Joe

23.17 it is

when I first met this, many years ago, I used Newton Raphson to hone in on the best angle

full solutions are available on the 'net'!

E

Joined
12 Jul 08
Moves
13814
Clock
23 Dec 16
2 edits
Vote Up
Vote Down

Never mind need to figure out curve.

B
Not Gone Yet

STALKER ALERT!!

Joined
15 Feb 16
Moves
1685
Clock
23 Dec 16
Vote Up
Vote Down

Originally posted by joe shmo
Well, I went through with it. I found a small error in my equation when I tried to solve it.

Corrected version:

1/2*π*R² = arccos [L/( 2*R )]*L² + R²*( arcsin[ L/R*√(1 - ( L/( 2*R))² ) ] - L/R*√( 1 - ( L/( 2*R))² ))

The answer is about 23.175 m.
dang! thats a lot. Neveer couldve figured that out nice work.

Cookies help us deliver our Services. By using our Services or clicking I agree, you agree to our use of cookies. Learn More.